

HandOut-GP-GrundlagenProgrammierung-v10.docx

GP Grundlagen
Programmierung

PowerShell

Quelle: https://openclipart.org/detail/191890/powershell-icon

Kursunterlagen

Kursunterlagen

GP Grundlagen Programmierung

HandOut-GP-GrundlagenProgrammierung-v10.docx 2

 Inhaltsverzeichnis

1. Einleitung .. 3

2. Die Entwicklungsumgebung ISE .. 5

3. Operationen und Variablen ... 9

4. Benutzereingaben .. 13

5. Schleifen ... 15

6. Funktionen .. 17

7. Theorie Abschlussprojekt ... 19

8. Schlussprojekt ... 20

Identifikation und Änderungsgeschichte

Dokumenttitel: Kursunterlagen
Autor: Michael Graf
Dateiname: HandOut-GP-GrundlagenProgrammierung-v10.docx
Ablageort: https://rau8804-my.sharepoint.com/personal/michael_graf_r-au_ch/Documents/RAU/Reform_21

- Temp/1 Entwicklung Module/GP-GrundlagenProgrammierung/Lernende/HandOut-GP-
GrundlagenProgrammierung-v10.docx

Version Datum Bemerkungen

1.0 19.10.2021 Initialversion / MG

Kursunterlagen

GP Grundlagen Programmierung

HandOut-GP-GrundlagenProgrammierung-v10.docx 3

 1. Einleitung

Im folgenden Kapitel soll erläutert werden, welche Scriptsprachen verbreitet sind und was sie
gemeinsam haben, welche Unterschiede zwischen Scriptsprachen und Programmiersprachen
bestehen und welche Ziele in den nächsten Tagen verfolgt werden.

1.1 Ziele

Ziel dieser drei Tage sind ein erster Einblick in die Welt der Scriptsprachen. Das bedeutet, dass
Sie zum Schluss dieser Ausbildungstage in der Lage sein sollen einfache Scripts selbst zu
entwickeln. Das Entwickeln von Scripts gewährt einen ersten Einblick in die Entwicklung von
Programmen und wie Aufgaben von Systemtechnikern später automatisiert werden können.

1.2 Was sind Scriptsprachen

Grundsätzlich können mit Scriptsprachen, wie oben erwähnt, Abläufe des Betriebssystems
automatisiert oder eben ganze Programme realisiert werden. Wichtigster Unterschied zu
anderen Programmiersprachen ist die Abhängigkeit von einem Interpreter. Während Sprachen
wie C/C++ in Befehle umgewandelt werden, die von der CPU ausgeführt werden können,
benötigt es für die Ausführung von Scriptsprachen einen Interpreter als Zwischenschicht. Dieser
Interpreter liest die Befehle ein und führt sie aus.

Hier ein kurzer Überblick über verschiedene Scriptsprachen:

PowerShell Befehle zur Administration von Windows-Systemen
Bash Script Für die Automatisierung auf Linux-Systemen
Python Sehr umfangreiche Sprache.
Perl Sehr stark bei der Verarbeitung von Text
JavaScript Hauptsächlich auf Webseiten verwendet (Client)
PHP Hauptsächlich für Webseiten verwendet (Server)

Kursunterlagen

GP Grundlagen Programmierung

HandOut-GP-GrundlagenProgrammierung-v10.docx 4

 1.3 Handlungsziele und Handlungsnotwendige Kenntnisse

Quelle: ICT-Berufsbildung Schweiz
Titel RAU: GP, PowerShell

Bildungsplan Applikationsentwicklung B3

Handlungs-
kompetenz

 B3.1: Entwickeln die Funktionalität benutzerfreundlich, z. B. löst die
gleiche Funktion immer die gleiche Aktion aus, bei Blättern bleiben
eingegebene Informationen erhalten usw.

Kompetenz Kann die grundlegenden Elemente, die jeglicher Programmierung
zugrunde liegen, in einem Programm umsetzen.

Objekt Ausführbare Programme nach prozeduralen Ansätzen, nach Vorgaben
erstellt.

Handlungsziele 3. Ablaufstruktur und Daten mit einer Programmiersprache in ein
Programm umsetzen.

4. Den Quellcode verständlich ausarbeiten (Variablennamen, Struktur,
Kommentare), um die Nachvollziehbarkeit des Programms
sicherzustellen.

Handlungsziel Handlungsnotwendige Kenntnisse (Ressourcen)

3. 1. Kennt den grundlegenden Aufbau eines Programms (Positionierung
von Deklaration und Verarbeitung usw.) und kann diesen Aufbau an
einem Programm beispielhaft erläutern.

2. Kennt die grundlegenden Befehle einer Programmiersprache
(Kontrollstrukturen, Operatoren) und kann aufzeigen, welche
Verarbeitungsanweisungen damit realisiert werden können.

4. 1. Kennt die wichtigsten Gliederungsmöglichkeiten (z.B. einrücken von
geschachtelten Kontrollstrukturen) und kann erläutern, welchen Beitrag
diese zur Lesbarkeit von Programmen leisten.

2. Kennt die wichtigsten Regeln für einen verständlichen Quellcode
(sprechende Variablenbezeichnungen, geeignete Kommentare) und
kann erläutern, welchen Beitrag diese Angaben zur Lesbarkeit von
Programmen leisten.

Handlungsnotwendige Kenntnisse beschreiben Wissenselemente, die das Erreichen einzelner

Handlungsziele eines Moduls unterstützen. Die Beschreibung dient zur Orientierung und hat
empfehlenden Charakter. Die Konkretisierung der Lernziele und des Lernwegs für den
Kompetenzerwerb sind Sache der Bildungsanbieter.

Kursunterlagen

GP Grundlagen Programmierung

HandOut-GP-GrundlagenProgrammierung-v10.docx 5

 2. Die Entwicklungsumgebung ISE

ISE steht für Integrated Scripting Environment. Ziel dieser ISE ist es also, alle Elemente in einer
Software zu sammeln. Bei anderen Programmiersprachen wird von einer IDE (Integrated
Development Environment) gesprochen.

Die PowerShell ISE hat drei wesentliche Elemente:
Scriptbereich Darin werden die Scripts geschrieben. Unterstützt durch Syntax

Highlighting.
Konsolenbereich Die Scripts werden ausgeführt und Befehle können ausprobiert werden.
Befehls-AddOn Bietet Informationen zu den verfügbaren Befehlen.

Nun sollen Sie sich mit einigen kurzen Übungen mit den einzelnen Elementen vertraut machen.

PowerShell Erste Schritte, grundlegende Konzepte

Was ist PowerShell?

Lernvideo Einführung ISE Integrated Scripting Environment

2.1 Konsolenbereich

Der Konsolenbereich erinnert stark an die klassische Kommandozeile und wird auch ähnlich
genutzt. Im Gegensatz zur Kommandozeile kann hier jedoch mit PowerShell gearbeitet w erden,
was wesentlich umfangreichere Möglichkeiten bietet.

A1 Zum Einstieg sollen Sie sehen, welche Befehle ihnen überhaupt zur Verfügung stehen.
Benutzen Sie dazu den Befehl Get-Command und Sie erhalten eine lange Liste.

A2 In dieser Liste werden sie auch verschiedene Typen von Befehlen erkennen. Erklären
Sie kurz wo die Unterschiede liegen.

A3 Nun sollen Sie einen Befehl herausnehmen, um etwas mehr darüber zu erfahren, z.B.
wie man ihn einsetzt. Dazu können Sie den Befehl Get-Help <Befehlsname> nutzen.

Nun sollte Ihnen angezeigt werden, wie Sie den Befehl aufrufen müssen und welche
Informationen Sie übergeben können. Achten Sie dabei auf den Unterschied von
Elementen in eckigen Klammern [] und spitzen Klammern <>. Elemente zwischen []
sind optional und müssen nicht zwingen angegeben werden.

Üben Sie nun den Umgang mit der Konsole in dem Sie verschiedene Files erstellen, bewegen
und wieder löschen. Dazu benötigen Sie die folgenden Kommandos:

• Get-ChildItem (dir als Alias) Zeigt den Ordnerinhalt an.

• Copy-Item (cp als Alias) Kopiert ein File oder Ordner von einem Ort zum anderen.

• New-Item (ni als Alias) Erstellt ein File oder Ordner.

• Set-Location (cd als Alias) Wechselt in einen angegebenen Ordner.

• Remove-Item (rm als Alias) Löscht ein File oder Ordner.

• Rename-Item (ren als Alias) Zur Umbenennung eines Files oder eines Ordners.

• Move-Item (mv als Alias) Verschieben eines Files oder eines Ordners.

Zur Übung sollen Sie in Ihrem Benutzerverzeichnis die folgende Dateistruktur erstellen.

https://docs.microsoft.com/de-de/powershell/scripting/learn/understanding-important-powershell-concepts?view=powershell-6
https://web.microsoftstream.com/video/1c79644b-159f-4ed0-ab58-80b948f730fc

Kursunterlagen

GP Grundlagen Programmierung

HandOut-GP-GrundlagenProgrammierung-v10.docx 6

 Set-Location C:\Users\<Benutzername>

Kursunterlagen

GP Grundlagen Programmierung

HandOut-GP-GrundlagenProgrammierung-v10.docx 7

 A4 Erstellen Sie folgenden Baum:

• INs
o Windows

▪ Installationsprotokoll.docx
▪ Lizenzen.docx

o Linux
▪ syslog
▪ .bashrc

o Netzwerk
▪ Netzwerkplan_physisch.vsdx
▪ Netzwerkplan_logisch.vsdx

Notieren Sie sich, welche Befehle Sie in welcher Reihenfolge benutzt haben.

A5 Nun verschieben, löschen oder kopieren Sie die Files so, dass Sie folgenden Baum
erhalten.

• INs
o RAU-Informatik

▪ Lizenzen.docx
▪ syslog
▪ .bashrc

o Linux
▪ Shellscript.sh
▪ Netzwerkplan_logisch_Kopie.vsdx

o Netzwerk
▪ Netzwerkplan_physisch.vsdx
▪ Netzwerkplan_logisch.vsdx

Notieren Sie sich, welche Befehle Sie in welcher Reihenfolge benutzt haben.

A6 Benutzen Sie nun einen einzigen Befehl, um alle Files anzuzeigen.

2.1.1 Pipeing

Ein wichtiges Konzept bei der Arbeit mit PowerShell, aber auch in Shell Scripts unter Linux
Systemen ist das Pipeing. Dabei geht es darum, die Ausgabe des einen Befehls, wie durch eine
Röhre (Pipe) in den nächsten zu leiten.

Get-Service Spooler | Restart-Service

So können auch mehrere zurückgegebene Objekte behandelt werden. Z.B. für Get-ChildItem

Get-ChildItem | Get-ItemProperty -Name LastWriteTime

Eine wichtige Funktion ist das Filtern bzw. gezielte Ausgeben von Objekten und deren
Eigenschaften. Mit Where-Object wird gefiltert, welche Objekte angezeigt werden und mit
Select-Object wird definiert, welche Eigenschaften angezeigt werden sollen.

z.B. Get-ChildItem | Where-Object {$_.Name -like "*.exe"} | Select-Object Name

A7 Benutzen Sie den Befehl Get-ChildItem um den aktuellen Ordnerinhalt anzuzeigen.
Vergleichen Sie anschliessend das Resultat mit und ohne Filter.

Kursunterlagen

GP Grundlagen Programmierung

HandOut-GP-GrundlagenProgrammierung-v10.docx 8

 2.2 Scriptbereich

Nun da Sie die grundlegende Anwendung von PowerShell geübt haben, wollen wir versuchen
diese Kenntnisse bei der Erstellung eines Scripts zu repetieren und zu vertiefen. Einfache
Scripts können sehr schnell erstellt werden, in dem die genutzten Befehle nacheinander in die
Script-Datei eingetragen werden. Dies soll nun mit je einem Script für die Aufgaben A4 und A5
ausprobiert werden.

A8 Erstellen Sie nun ein Script zu A4, welches den gesamten Verzeichnisbaum erstellt.
Der Befehl Get-History kann dabei sehr hilfreich sein.

A9 Nun erstellen Sie ein Script zu A5, welches die Mutationen im Baum vornimmt.

A10 Bevor Sie diese Scripts ausführen können, müssen Sie die Ausführung von Scripts auf
dem System freischalten. Welcher Befehl wird dazu genutzt und welche
verschiedenen Optionen können gewählt werden? Schreiben Sie dazu eine kurze
Anleitung inkl. der Bedeutung dieser verschiedenen Varianten.

A11 Führen Sie nun ihre Scripts nacheinander mit der Taste F5 oder den dazu

verwendeten Schaltflächen aus.

Kursunterlagen

GP Grundlagen Programmierung

HandOut-GP-GrundlagenProgrammierung-v10.docx 9

 3. Operationen und Variablen

Operatoren sind wohlbekannt aus der Mathematik. Natürlich wird bei der Mathematik
hauptsächlich über die arithmetischen Operatoren gesprochen. In der Umgebung von
Programmieren und Scripten gibt es jedoch noch weitere. Gestartet wird jedoch mit Bekanntem.

3.1 Arithmetische Operatoren

A12 Für den Einstieg in das Thema Operatoren, lösen Sie die untenstehenden
Rechnungen mithilfe der PowerShell Konsole.
67 + 5 =
46 – 9 =
7 * 12 =
184 / 4 =

167 % 3 =
Was bedeutet dieses Prozentzeichen?

A13 Interessant ist, dass nicht nur Zahlen „addiert“ werden können, sondern auch
Buchstaben oder Wörter und hier ist nicht die Rede von Algebra. Versuchen Sie es
aus und notieren, welche Ausgabe auf dem Bildschirm erscheint:
“abc“ * 3 :
„hallo „ + „welt“ :

3.2 Zuweisungsoperator und Variablen

Wie Sie oben vielleicht bereits bemerkt haben, ist es nicht nötig bzw. sogar falsch, wenn Sie das
Gleichheitszeichen verwenden für Rechnungen. Ihr System erwartet mehr. Das
Gleichheitszeichen besitzt eine besondere Funktion. Es ist dazu da Werte zuweisen zu können.

Diese errechneten oder erhaltenen Werte, werden einer Variable zugewiesen. Diese Variablen
können verschiedenste Werte speichern, um sie später wieder abrufen zu können. In
PowerShell macht es dabei keinen Unterschied, ob es kleine Zahlen, grosse Zahlen oder gar
ganze Sätze sind. Es wird selbst erkannt, wie es mit den gespeicherten Informationen
umzugehen hat oder gibt eine Fehlermeldung, wenn die gespeicherten Werte nicht zur Situation
passen. Passen Sie aber auf, wenn Sie mit anderen Programmiersprachen entwickeln. Es gibt
Sprachen, in denen Sie genau definieren müssen, welche Art von Daten eine Variable enthält.

Es folgt ein kleines Beispiel anhand dessen die Variablen und deren Nutzung erklärt werden
soll:

$zahl1 = 3 # Der Wert 3 wird der Variabel $zahl1 zugewiesen
$zahl2 = 1+4 # Das Resultat von 1 + 4 wird der Variabel $zahl2 zugewiesen

$resultat = $zahl1 * $zahl2 # Die Variablen können nun gelesen werden und das Resultat
wird in eine weitere gespeichert.

Write-Output $resultat # Das Resultat wird auf die Konsole geschrieben

Kursunterlagen

GP Grundlagen Programmierung

HandOut-GP-GrundlagenProgrammierung-v10.docx 10

 Wenn wir uns das Beispiel oben ansehen, sehen wir die Zuweisung von Werten zu ihren
Variablen mithilfe des Gleichheitszeichens und wir sehen ebenfalls wie diese Werte wieder
gelesen werden können. Dabei verhalten sich Variablen wie die darin gespeicherten Werte.

Auch wichtig sind Kommentare. Sie dienen zur Dokumentation innerhalb des Codes und
unterstützen so Andere dabei, Ihren Code zu verstehen. Nicht zu vergessen ist auch, dass Sie
Ihren Code nach längerer Zeit wieder verstehen möchten. Dabei helfen Kommentare ungemein.
Kommentare werden mit # eingeleitet und gelten bis zum Ende der Zeile.

3.3 Inkrement und Dekrement

Für viele Operationen in Verbindung mit dem Zuweisungsoperator („=“) gibt es Abkürzungen und
Vereinfachung.

A14 Was wird nach dem folgenden Codeausschnitt auf die Konsole geschrieben?
Informieren Sie sich über die gesehenen Operatoren und versuchen Sie die Lösung zu
finden.
$zahl1 = 25
$zahl2 = 50

$zahl2 -= 25
$zahl2 = $zahl2 + $zahl1--
$zahl2++
$zahl2 += ++$zahl1

Write-Output $zahl2 $zahl1

A15 Was wird hier auf der Konsole ausgegeben?
$text1 = "Das ist "
$text2 = "richtig!"

$ausgabe = $text1
$ausgabe += $text2

Write-Output $ausgabe

3.4 Vergleiche und deren Operatoren

Nun kommt ein weiterer Schritt zu einem echten Programm hinzu. In beinahe jedem Programm
wird der weitere Verlauf durch die Werte von Variablen bestimmt. Sie sollen jetzt lernen, wie
diese Werte überprüft werden und wie der weitere Verlauf damit kontrolliert werden kann.

Ein Vergleich gibt immer ein Resultat zurück, ob der Vergleich stimmt (True) oder nicht (False).
Zudem können Vergleiche auch miteinander verknüpft werden, um gleich mehrere Vergleiche zu
überprüfen. Es gibt sehr viele Vergleichsoperatoren, die folgend kurz ausgeführt werden:

-eq Equals (statt dem in der Mathematik üblichen „=“)

-ne Not Equal

-lt Less Than

-le Less or Equal

-gt Greater Than

-ge Greater or Equal

Kursunterlagen

GP Grundlagen Programmierung

HandOut-GP-GrundlagenProgrammierung-v10.docx 11

 Für Wörter oder ganze Sätze, werden gerne auch andere Operatoren benutzt, wie sie unten
kurz beschrieben werden. Der Grund dafür ist, dass bei –eq die Zeichenkette genau
übereinstimmen muss und keine Wildcards unterstützt werden.

-like Nutzt Wildcards wie * und ?

-notlike

-match Nutzt Regular Expressions

-notmatch

Da Regular Expressions in sich schon diese drei Tage füllen würden, liegt die Aufmerksamkeit
auf den sogenannten Wildcards. Wobei „*“ für eine beliebige Anzahl beliebiger Zeichen steht
und „?“ steht für ein beliebiges Zeichen.

A16 Geben Sie für die folgenden Vergleiche der Zahlen an, ob diese stimmen oder nicht.
Schreiben sie dazu das Resultat (True oder False)
7 –ne 7 :
5 –eq 5 :
4 –lt 8 :
9 –le 9 :
6 –gt 10 :

A17 Nun bestimmen Sie das Resultat bei Vergleichen von verschiedenen Zeichenketten.
„RAU“ –like „?AU“
„AU“ –like „?AU“
„Dampfwalze“ –notlike „Dam*lze“

Diese Vergleiche können mit logischen Operatoren miteinander verknüpft werden, um
komplexere Überprüfungen durchführen zu können.

-and Beide Vergleiche müssen True ergeben

-or Einer oder beide Vergleiche müssen True ergeben

-xor Genau ein Vergleich ergibt True

-not (!) Ändert Resultat eines Vergleichs

A18 Was ergeben nun also folgende verknüpften Vergleiche?
$zahl = 13
$wort = „Informatiker“

$zahl –eq 4 –xor $zahl –gt 7
$zahl –le 13 –and $zahl –gt 3
$wort –like „Info“ –or $wort –notlike „*matiker“
!($wort –like „Info“) –and $zahl –ne 3

Kursunterlagen

GP Grundlagen Programmierung

HandOut-GP-GrundlagenProgrammierung-v10.docx 12

 3.5 If-Statement

Wie können diese Vergleiche nun zur Kontrolle des Programm- bzw. Scriptablaufs verwendet
werden? Dazu wird ein If-Statement verwendet. Beachten Sie dazu das kurze Beispiel und die
enthaltenen Kommentare.

$zahl = 7 # Eine einfache Zahl wird zum Vergleich definiert

if ($zahl -eq 5){ # Zuerst wird geprüft, ob die Zahl gleich 5 ist.
 Write-Output "Die Zahl ist 5." # Ist dies der Fall (True) wird es auf die Konsole geschrieben
}elseif($zahl -gt 5){ # elseif ermöglicht einen zweiten Vergleich
 Write-Output "Die Zahl ist grösser als 5."
}else{ # der Code für else wird aufgerufen, wenn der Vergleich False war
 Write-Output "Die Zahl ist kleiner als 5."
}

Bei diesem Beispiel gilt es zu beachten, dass elsif oder else nicht zwingend nötig sind. Die
Einrückung innerhalb der geschweiften Klammern dient dazu, die Lesbarkeit des Programms zu
verbessern.

A19 Übernehmen Sie das Beispiel in die PowerShell ISE und führen Sie es mit
verschiedenen Werten für $zahl aus.

A20 Schreiben Sie ein Script, welches überprüft, ob der Computer den richtigen Namen
trägt. Der Name ihres Computers sollte dem folgenden Muster entsprechen: ELBINXX.
Dieser Name ist auf dem Gerät selbst festgehalten. Nun ist der Name nicht zwingend
korrekt. Schreiben Sie eine kurze Ausgabe auf die Kommandozeile. Den
Computernamen erhalten Sie mit dem Befehl hostname.

Kursunterlagen

GP Grundlagen Programmierung

HandOut-GP-GrundlagenProgrammierung-v10.docx 13

 4. Benutzereingaben

Der nächste Schritt ist es die erstellten Scripts interaktiver zu gestalten und dem Benutzer der
Scripts eine Einflussmöglichkeit zu geben. Informationen können auf verschiedene Arten vom
Benutzer erhalten werden.

4.1 Parameter beim Scriptaufruf

Wie bei verschiedenen Befehlen bereits zu erkennen, können Informationen wie das zu
kopierende File als Parameter übergeben werden. Diese Möglichkeit kann auch innerhalb eines
Scripts genutzt werden, indem wir alle Eingaben zuerst als Variablen speichern. Hier muss
jedoch bekannt sein, welche Art von Informationen gespeichert werden soll.

Param(
 [int]$zahl = 3 # [Typ]Name = Standardwert
)

if($zahl -eq 3){
 Write-Output "Richtig"
}else{
 Write-Output "Falsch"
}

In diesen Param Bereich können nun alle nötigen oder möglichen Parameter eingetragen
werden. Wird kein Wert geliefert, wird ein optionaler Standardwert gewählt.

Für diese Parameter können verschiedene Typen gewählt werden. Die grundlegendsten sind
sicher Zeichenketten, Zahlen und Switches.

[string] Eine Kette von Zeichen, also Wörter, Sätze usw.

[int] Integer oder Ganzzahl.

[float] Kommazahlen

[switch] Erhalten keinen Wert. Wird auf True gesetzt, wenn der Parameter genannt wird.

A21 Übernehmen Sie nun ihr Script aus A19 und ändern es so ab, dass die zu
vergleichende Zahl beim Aufruf übermittelt wird.

A22 Ergänzen Sie das Script und geben Sie die Möglichkeit einen Namen zu übergeben.
Die Ausgabe sollte dann etwa wie folgt aussehen:
Christian fragt, ob 1 gleich 5 ist.

A23 Erstellen Sie einen Switch-Parameter lang.
Nur wenn dieser angegeben wird, soll überprüft werden, ob die Zahl kleiner oder
grösser ist. Wird lang nicht angegeben, soll lediglich überprüft werden, ob die Zahlen
übereinstimmen.

Kursunterlagen

GP Grundlagen Programmierung

HandOut-GP-GrundlagenProgrammierung-v10.docx 14

 4.2 Eingabe während Ausführung

Zusätzlich zu den Parametern können vom Benutzer gezielt Informationen erfragt werden, wenn
das Script bereits ausgeführt wird. Dies könnte in etwa wie folgt aussehen.

$name = Read-Host -Prompt "Wie lautet ihr Name?"
Write-Output "Hallo $name"

A24 Ändern Sie das Script aus A21 so ab, dass die Zahl und der Name nacheinander
erfragt werden und nicht mehr als Parameter übergeben werden.

A25 Schreiben Sie ein Script, bei dem zwei Benutzer mit ihrem Namen eine Zahl eingeben
können. Danach wird überprüft, wer sich näher an einer Zahl zwischen 1 und 100
befindet.
Für Zufallszahlen kann der Befehl Get-Random benutzt werden. Prüfen Sie die
korrekte Anwendung zuerst mit Get-Help.

Kursunterlagen

GP Grundlagen Programmierung

HandOut-GP-GrundlagenProgrammierung-v10.docx 15

 5. Schleifen

Oft müssen in Programmen dieselben Dinge wiederholt werden. Meist für verschiedene
Elemente. Dies wird mit sogenannten Schleifen umgesetzt.

5.1 For

For Schleifen werden genutzt, um etwas während einer bestimmten Anzahl von Wiederholungen
auszuführen. Z.B. um von 0 bis 10 zu zählen. Das For Statement besteht dabei aus drei Teilen.
Einer Initialisierung (meistens die Zählvariable), einem Vergleich und einer Operation, die nach
jedem Durchlauf ausgeführt wird.

for($i=0;$i -le 10; ++$i){
 Write-Output $i
}

5.2 While

While Schlaufen werden dazu genutzt etwas auszuführen bis ein bestimmter Zustand nicht mehr
erfüllt ist. So kann von einer Datei so lange gelesen werden, solange es etwas zu lesen gibt.

$input = "weiter"
while($input -ne "exit"){ # Wiederholt sich, bis exit eingegeben wurde
 $input = Read-Host "Weiter oder exit?:"
}

5.2.1 Do While

Mit Do While kann sichergestellt werden, dass eine Schleife mindestens einmal durchlaufen
wird.

do{ # Wiederholt sich, bis exit eingegeben wurde
 $input = Read-Host "Weiter oder exit?:"
}while($input -ne "exit")

5.2.2 Do Until

Do Until ist beinahe dasselbe. Es wird jedoch ausgeführt bis die Bedingung erfüllt ist. So muss in
unserem Beispiel das –ne in ein –eq geändert werden.

do{ # Wiederholt sich, bis exit eingegeben wurde
 $input = Read-Host "Weiter oder exit?:"
}until($input -eq "exit")

5.3 ForEach

ForEach wird benötigt um für jedes Element z.B. in einem Array einen Durchlauf zu machen.
Arrays sind spezielle Variablen, welche mehrere Werte beinhalten. So kann z.B. leicht für jedes
File in einem Ordner eine Aktion ausgeführt werden.

$files = Get-ChildItem

foreach($file in $files){
 Write-Output "File gefunden $file"
}

Kursunterlagen

GP Grundlagen Programmierung

HandOut-GP-GrundlagenProgrammierung-v10.docx 16

 5.4 Aufgaben

A26 Schreiben Sie ein Script, das den Parameter –prefix entgegennimmt und diesen Text
vor jeden Filenamen im aktuellen Ordner hängt.
Beispiel: Zusammenfassung_PowerShell.docx wird mit dem Präfix RAU-
zu RAU-Zusammenfassung_PowerShell.docx

A27 In dieser Aufgabe soll man seinen eigenen praktischen Notenrechner
zusammenbauen. Damit man selbst nicht mehr so mühsam rechnen muss, wird die
Eingabe auf zwei Werte beschränkt: Die maximale Punktzahl, die in der Prüfung zu
erreichen ist und die erreichte Punktzahl in der Prüfung. Im Hintergrund wird eine
Rechnung aufgebaut, die die beiden Variablen zu einem Wert zusammenzählt und mit
einer If-Abfrage das Resultat der Note ausgibt.

Berechnung Note:
𝑒𝑟𝑟𝑒𝑖𝑐ℎ𝑡𝑒 𝑃𝑢𝑛𝑘𝑡𝑒𝑧𝑎ℎ𝑙

𝑚𝑎𝑥𝑖𝑚𝑎𝑙𝑒 𝑃𝑢𝑛𝑘𝑡𝑒𝑧𝑎ℎ𝑙
∙ 5 + 1

Beispiel: 45 erreichte Punkte und 60 maximale Punkte ergibt die Note 4.75.

Man soll ebenfalls entscheiden können, ob die Rechnung auf die gerundete Note
ausgeführt wird und auch ob man eine weitere Note berechnen möchte.

Kursunterlagen

GP Grundlagen Programmierung

HandOut-GP-GrundlagenProgrammierung-v10.docx 17

 6. Funktionen

Funktionen werden genutzt, um Programmteile, die an verschiedenen Orten im Code genutzt
werden, zu definieren. So kann die Funktion einmal geschrieben werden und überall im Code
verwendet werden. Programmcode der in einer Schleife genutzt wird, wird oft ausgeführt aber
nur einmal geschrieben. Funktionen eignen sich also nur bedingt um diese zu vereinfachen. Die
Lesbarkeit und das Verständnis des Programms kann jedoch klar verbessert werden. Es geht
auch darum, die Redundanz im Code zu minimieren, damit ein Fehler auch nur an einer Stelle
behoben werden muss oder zukünftige Erweiterungen schnell umgesetzt werden können.

Funktionen übernehmen einen Übergabewert (Parameter) und geben falls nötig, einen Wert
zurück. Ein einfaches Beispiel ist eine Funktion, welche eine Summe bildet.

function sum($zahl1, $zahl2){
 return $zahl1 + $zahl2
}

$ausgabe = sum 1 2

Write-Output $ausgabe

Eine Funktion muss immer oberhalb des Aufrufs definiert werden, damit die Funktion auch
bekannt ist. In diesem Beispiel werden die zwei Zahlen übergeben und die Summe mit return
zurückgegeben. Übergabewerte und Rückgabewert sind optional.

A28 Erstellen Sie ein Script, welches zur Berechnung von Dreiecken dient. Erstellen Sie in
einer Schleife ein Menu, welches zur Auswahl stellt, ob die Fläche (A), Höhe (hc) oder
die Länge der Hypotenuse (c) berechnet werden soll. Gehen Sie davon aus, dass es
sich jeweils um ein rechtwinkliges Dreieck handelt und der Benutzer die Längen der
Seiten a und b übermittelt.
Lagern Sie jede Berechnung als Funktion aus.
Der Zeitpunkt und die Art, wie die Kantenlängen erfasst werden, ist Ihnen überlassen.
In welchem Teil des Programms die Ausgabe ausgeführt wird, ist auch Ihnen
überlassen.

A29 Erstellen Sie ein ähnliches Programm. Dieses Mal haben Sie jedoch die Länge (a) und
die Breite (b) eines Rechtecks. Ihr Programm soll Funktionen zur Berechnung der
Fläche (A), der Diagonale (c) und des Umfangs (U) liefern.

Kursunterlagen

GP Grundlagen Programmierung

HandOut-GP-GrundlagenProgrammierung-v10.docx 18

 A30 Niveau 1: Schreiben Sie ein Skript, welches den Benutzer eine Zahl erraten lässt.
Nach jedem Versuch soll mitgeteilt werden, ob die gesuchte Zufallszahl höher oder
tiefer ist. Sobald die geratene Zahl übereinstimmt, wird mit einer Gratulation beendet.
Versuche sie die Aufgabe mithilfe einer Funktion umzusetzen. Eine Zahl zwischen 1
und 100 erraten.

A31 Niveau 2: Schreiben Sie ein Skript, welches den Benutzer eine Zahl erraten lässt.
Nach jedem Versuch soll mitgeteilt werden, ob die gesuchte Zufallszahl höher oder
tiefer ist. Sobald die geratene Zahl übereinstimmt, wird mit einer Gratulation beendet.
Versuche sie die Aufgabe mithilfe einer Funktion umzusetzen. Im Skript soll zwischen
drei verschiedenen Schwierigkeitslevel ausgewählt werden können. Ein Level von 1-
10, 1-100 und von 1-1000.

A32 Niveau 3: Schreiben Sie ein Skript, welches den Benutzer eine Zahl erraten lässt.
Nach jedem Versuch soll mitgeteilt werden, ob die gesuchte Zufallszahl höher oder
tiefer ist. Sobald die geratene Zahl übereinstimmt, wird mit einer Gratulation beendet.
Versuche sie die Aufgabe mithilfe einer Funktion umzusetzen. Im Skript soll zwischen
drei verschiedenen Schwierigkeitslevel ausgewählt werden können. Ein Level von 1-
10, 1-100 und von 1-1000. Dazu sollte in der Gratulation ersichtlich sein wie viele
Versuche der Benutzer gebraucht hat.

Kursunterlagen

GP Grundlagen Programmierung

HandOut-GP-GrundlagenProgrammierung-v10.docx 19

 7. Theorie Abschlussprojekt

7.1 Benutzer erstellen

Name Erklärung

net user Wenn dieser Befehl alleine steht, zeigt er an, welche Benutzer aktuell auf dem Computer vorhanden sind.

Benutzername Dies ist der Name des Benutzers (bis zu 20 Zeichen lang) den man bearbeiten, löschen oder hinzufügen
will.

Passwort Um das Passwort festzulegen.

/add Um den Benutzer hinzuzufügen.

/domain Um den Benutzer zur Domain hinzuzufügen.

/delete Um den Benutzer zu löschen.

/help Um Details über diesen Befehl zu erhalten.

7.2 Netzlaufwerk hinzufügen

Mit dem Befehl "New-PSDrive" können Netzlaufwerke hinzugefügt werden.
New-PSDrive [-name] string [-root] string [-Persist] [-PSProvider] string

Name Erklärung

-name Definiert den Namen des Netzlaufwerks.

-root Der Ort, wo das Netzlaufwerk herkommt.

-persist Definiert, dass das Netzlaufwerk persistent ist.

-PSProvider Der Name des PSProviders, kann FileSystem, Registry oder Certificate sein.

7.3 Out-GridView

Name Erklärung

Out-Gridview Erstellt ein Output-Fenster einer tabellarischen Ansicht der Daten, die damit abgerufen werden. Lässt sich
in Piping verwenden.

-title «Name» Gibt dem Fenster einen Titel.

-PassThru Öffnet die Tabelle mit einer OK und Schliessen Schaltfläche. Die Auswahl wird durch OK an die Konsole
zurückgegeben.

-wait

-OutputMode

Kursunterlagen

GP Grundlagen Programmierung

HandOut-GP-GrundlagenProgrammierung-v10.docx 20

 8. Schlussprojekt

Nun haben Sie die wichtigsten Kenntnisse erlangt, um auch umfangreichere Scripts und
Programme zu erstellen. Auf dem weiteren Weg geht es darum immer neue Cmdlets
kennenzulernen, welche für die verschiedensten Aufgaben benötigt werden.
Als erste Aufgabe mit einem realen Nutzen erstellen Sie ein Script zur Konfiguration eines
Betriebssystems. Dafür nehmen Sie die Vorgaben aus dem Modul 304.

Ziel ist es, dass das Script sämtliche Konfigurationen ohne Unterbruch selbständig ausführt.

8.1 Durchzuführende Konfigurationen Niveau 1

A33 Erstellen Sie mit dem Script folgende Benutzerkonten:
Informatik Administrator Raurau_10
Elektronik Standard Elerau_10
Mechanik Standard Mecrau_10

A34 Verbinden Sie folgende Netzlaufwerke:
J: \\192.168.75.10\Austausch\Informatik\Abgaben
T: \\192.168.75.10\Austausch\Informatik\Vorgaben
P: \\192.168.75.10\UserHome$\h_muster

A35 Fügen Sie Outlook dem Windows Autostart hinzu.

8.2 Durchzuführende Konfigurationen Niveau 2

A36 Ein Menü mit Grid-View erstellen. In diesem soll zwischen «Datei kopieren», «Datei
verschieben» und «Datei löschen» ausgewählt werden können. Der neue Speicherort
soll dann automatisch im Explorer geöffnet werden.

8.3 Durchzuführende Konfigurationen Niveau 3

A37 Erstellen Sie mit dem Script folgende Benutzerkonten:
Informatik Administrator Raurau_10
Elektronik Standard Elerau_10
Mechanik Standard Mecrau_10

A38 Aktivieren Sie alle Desktopsymbole (Arbeitsplatz, Papierkorb, Benutzer,
Systemsteuerung und Netzwerk).

A39 Definieren Sie die Anzeigeoptionen des Datei Explorer wie folgt.

• Dateierweiterung auch bei bekannten Dateitypen anzeigen.

• Geschützte Systemdateien anzeigen.

• Versteckte Dateien anzeigen.

• Vollständiger Pfad in der Adressliste anzeigen.

• Detailansicht als Standard

Kursunterlagen

GP Grundlagen Programmierung

HandOut-GP-GrundlagenProgrammierung-v10.docx 21

A40 Verbinden Sie folgende Netzlaufwerke:
J: \\192.168.75.10\Austausch\Informatik\Abgaben
T: \\192.168.75.10\Austausch\Informatik\Vorgaben
P: \\192.168.75.10\UserHome$\h_muster

A41 Fügen Sie die in A40 verbundenen Netzlaufwerke dem Schnellzugriff hinzu. Der
Desktop- und Dokumentordner sollen ebenfalls hinzugefügt werden.

A42 Schalten Sie die Audioausgabe auf Stumm.

A43 Fügen Sie Outlook dem Windows Autostart hinzu.

A44 Stellen Sie sicher, dass www.r-au.ch als Startseite definiert ist.

Kursunterlagen

GP Grundlagen Programmierung

HandOut-GP-GrundlagenProgrammierung-v10.docx 22

 8.4 Zusatzaufgabe: Konfigurationen Überprüfen

Während den Installationen im Modul 304 mussten Sie verschiedene Einstellungen vornehmen
und verschiedene Programme zusätzlich installieren. Erstellen Sie nun ein Script, welches die
getätigten Installationen und Konfigurationen überprüft. Gehen Sie dazu in zwei Schritten vor.
Zuerst erarbeiten Sie, wie die nötigen Informationen in PowerShell gefunden werden können. In
einem zweiten Schritt überprüfen Sie die gefundenen Informationen auf ihre Richtigkeit und
stellen das Resultat dem Benutzer zur Verfügung.

A45 Überprüfen Sie, ob sich die Systempartition C: auf der SSD Disk befindet.

A46 Überprüfen Sie, ob das komplette Office Paket installiert wurde oder, ob einzelne
Programme fehlen. In einer Ausgabe soll ebenfalls ersichtlich sein, welche Programme
noch zu installieren sind.

A47 Kontrollieren Sie analog zu A46 folgende Programme:
Visio
Acrobat Reader
GIMP
Inkscape
Notepad++
Visual Studio
Eclipse
Android Studio

