EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

GP Grundlagen
Programmierung

PowerShell

Quelle: https://openclipart.org/detail/191890/powershell-icon

Kursunterlagen

Kursunterlagen R u
U

GP Grundlagen Programmierung REGIONALES AUSBILOUNGSZENTRUM AU
Inhaltsverzeichnis

S T | =Y 1 0 oo SRR 3
2. Die EntwicklungsSumgebUNG ISE e e e s r e e e e e s e e e e e e e e e e aannes 5
3. Operationen UNd Vari@bIeNooo it 9
4. BeNUIZEIINGADEN ..coiieiee ettt st e e e et e e e bt e e e a et e e e b b e e e e e e e 13
LT o] o1 1= (=1 o I U TPPRT 15
T U 014 11 Y 1= o PSS ERRR 17
7. Theorie ADSCNIUSSPIOJEKL ...t e et e e breeeeeaes 19
. TS T 1 LU 1] o1 0] =] - APPSRt 20

Identifikation und Anderungsgeschichte

Dokumenttitel: Kursunterlagen

Autor: Michael Graf

Dateiname: HandOut-GP-GrundlagenProgrammierung-v10.docx

Ablageort: https://rau8804-my.sharepoint.com/personal/michael_graf_r-au_ch/Documents/RAU/Reform_21

- Temp/1 Entwicklung Module/GP-GrundlagenProgrammierung/Lernende/HandOut-GP-
GrundlagenProgrammierung-v10.docx

Version | Datum Bemerkungen

1.0 19.10.2021 Initialversion / MG

HandOut-GP-GrundlagenProgrammierung-v10.docx 2

Kursunterlagen R U
U

GP Gru ndlag en Prog ram mierung REGIONALES AUSBILDUNGSZENTRUM AU

1. Einleitung

Im folgenden Kapitel soll erlautert werden, welche Scriptsprachen verbreitet sind und was sie
gemeinsam haben, welche Unterschiede zwischen Scriptsprachen und Programmiersprachen
bestehen und welche Ziele in den nachsten Tagen verfolgt werden.

1.1 Ziele

Ziel dieser drei Tage sind ein erster Einblick in die Welt der Scriptsprachen. Das bedeutet, dass
Sie zum Schluss dieser Ausbildungstage in der Lage sein sollen einfache Scripts selbst zu
entwickeln. Das Entwickeln von Scripts gewahrt einen ersten Einblick in die Entwicklung von
Programmen und wie Aufgaben von Systemtechnikern spater automatisiert werden kénnen.

1.2 Was sind Scriptsprachen

Grundsatzlich kdnnen mit Scriptsprachen, wie oben erwahnt, Ablaufe des Betriebssystems
automatisiert oder eben ganze Programme realisiert werden. Wichtigster Unterschied zu
anderen Programmiersprachen ist die Abhangigkeit von einem Interpreter. Wahrend Sprachen
wie C/C++ in Befehle umgewandelt werden, die von der CPU ausgefuhrt werden kénnen,
bendotigt es fur die Ausfihrung von Scriptsprachen einen Interpreter als Zwischenschicht. Dieser
Interpreter liest die Befehle ein und filhrt sie aus.

Hier ein kurzer Uberblick tiber verschiedene Scriptsprachen:

PowerShell Befehle zur Administration von Windows-Systemen
Bash Script Fur die Automatisierung auf Linux-Systemen
Python Sehr umfangreiche Sprache.

Perl Sehr stark bei der Verarbeitung von Text
JavaScript Hauptsachlich auf Webseiten verwendet (Client)
PHP Hauptsachlich fir Webseiten verwendet (Server)

HandOut-GP-GrundlagenProgrammierung-v10.docx 3

Kursunterlagen

RZNU

GP Gru ndlag en Prog ram mierung REGIONALES AUSBILDUNGSZENTRUM AU

1.3 Handlungsziele und Handlungsnotwendige Kenntnisse

Quelle: ICT-Berufsbildung Schweiz

Titel
Bildungsplan
Handlungs-
kompetenz
Kompetenz

Objekt

Handlungsziele

Handlungsziel

3.

3.

RAU: GP, PowerShell
Applikationsentwicklung B3

B3.1: Entwickeln die Funktionalitdt benutzerfreundlich, z. B. l6st die
gleiche Funktion immer die gleiche Aktion aus, bei Blattern bleiben
eingegebene Informationen erhalten usw.

Kann die grundlegenden Elemente, die jeglicher Programmierung
zugrunde liegen, in einem Programm umsetzen.

Ausflihrbare Programme nach prozeduralen Ansatzen, nach Vorgaben
erstellt.

Ablaufstruktur und Daten mit einer Programmiersprache in ein
Programm umsetzen.

Den Quellcode verstandlich ausarbeiten (Variablennamen, Struktur,
Kommentare), um die Nachvollziehbarkeit des Programms
sicherzustellen.

Handlungsnotwendige Kenntnisse (Ressourcen)

1.

Kennt den grundlegenden Aufbau eines Programms (Positionierung
von Deklaration und Verarbeitung usw.) und kann diesen Aufbau an
einem Programm beispielhaft erlautern.

Kennt die grundlegenden Befehle einer Programmiersprache
(Kontrollstrukturen, Operatoren) und kann aufzeigen, welche
Verarbeitungsanweisungen damit realisiert werden kénnen.

Kennt die wichtigsten Gliederungsmdglichkeiten (z.B. einriicken von
geschachtelten Kontrollstrukturen) und kann erlautern, welchen Beitrag
diese zur Lesbarkeit von Programmen leisten.

Kennt die wichtigsten Regeln fir einen verstandlichen Quellcode
(sprechende Variablenbezeichnungen, geeignete Kommentare) und
kann erlautern, welchen Beitrag diese Angaben zur Lesbarkeit von
Programmen leisten.

Handlungsnotwendige Kenntnisse beschreiben Wissenselemente, die das Erreichen einzelner
Handlungsziele eines Moduls unterstlitzen. Die Beschreibung dient zur Orientierung und hat
empfehlenden Charakter. Die Konkretisierung der Lernziele und des Lernwegs fur den
Kompetenzerwerb sind Sache der Bildungsanbieter.

HandOut-GP-GrundlagenProgrammierung-v10.docx 4

Kursunterlagen R U
U

GP Gru ndlag en Prog ram mierung REGIONALES AUSBILDUNGSZENTRUM AU

2. Die Entwicklungsumgebung ISE

ISE steht fur Integrated Scripting Environment. Ziel dieser ISE ist es also, alle Elemente in einer
Software zu sammeln. Bei anderen Programmiersprachen wird von einer IDE (Integrated
Development Environment) gesprochen.

Die PowerShell ISE hat drei wesentliche Elemente:

Scriptbereich Darin werden die Scripts geschrieben. Unterstitzt durch Syntax
Highlighting.

Konsolenbereich Die Scripts werden ausgefiihrt und Befehle kbnnen ausprobiert werden.

Befehls-AddOn Bietet Informationen zu den verfligbaren Befehlen.

Nun sollen Sie sich mit einigen kurzen Ubungen mit den einzelnen Elementen vertraut machen.

{. PowerShell | Erste Schritte, grundlegende Konzepte
Was ist PowerShell?
@ Lernvideo | Einfilhrung ISE Integrated Scripting Environment

2.1 Konsolenbereich

Der Konsolenbereich erinnert stark an die klassische Kommandozeile und wird auch ahnlich
genutzt. Im Gegensatz zur Kommandozeile kann hier jedoch mit PowerShell gearbeitet w erden,
was wesentlich umfangreichere Mdglichkeiten bietet.

Al Zum Einstieg sollen Sie sehen, welche Befehle ihnen tberhaupt zur Verfigung stehen.
Benutzen Sie dazu den Befehl Get-Command und Sie erhalten eine lange Liste.

A2 In dieser Liste werden sie auch verschiedene Typen von Befehlen erkennen. Erklaren
Sie kurz wo die Unterschiede liegen.

A3 Nun sollen Sie einen Befehl herausnehmen, um etwas mehr dariiber zu erfahren, z.B.
wie man ihn einsetzt. Dazu kdnnen Sie den Befehl Get-Help <Befehlsname> nutzen.

Nun sollte Ihnen angezeigt werden, wie Sie den Befehl aufrufen miissen und welche
Informationen Sie Uibergeben kénnen. Achten Sie dabei auf den Unterschied von
Elementen in eckigen Klammern [] und spitzen Klammern <>. Elemente zwischen []
sind optional und missen nicht zwingen angegeben werden.

Uben Sie nun den Umgang mit der Konsole in dem Sie verschiedene Files erstellen, bewegen
und wieder lI6schen. Dazu bendtigen Sie die folgenden Kommandos:

Get-ChildItem (dir als Alias) Zeigt den Ordnerinhalt an.
Copy-Item (cp als Alias) Kopiert ein File oder Ordner von einem Ort zum anderen.
New-Item (ni als Alias) Erstellt ein File oder Ordner.

Set-Location (cd als Alias) Wechselt in einen angegebenen Ordner.
Remove-ltem (rm als Alias) Ldscht ein File oder Ordner.

Rename-Item (ren als Alias) Zur Umbenennung eines Files oder eines Ordners.
Move-ltem (mv als Alias) Verschieben eines Files oder eines Ordners.

Zur Ubung sollen Sie in Ihrem Benutzerverzeichnis die folgende Dateistruktur erstellen.

HandOut-GP-GrundlagenProgrammierung-v10.docx 5

https://docs.microsoft.com/de-de/powershell/scripting/learn/understanding-important-powershell-concepts?view=powershell-6
https://web.microsoftstream.com/video/1c79644b-159f-4ed0-ab58-80b948f730fc

Kursunterlagen R U

2>~

GP Grundl agen Pro gramm ierun g REGIONALES AUSBILDUNGSZENTRUM AU

Set-Location C:\Users\<Benutzername>

HandOut-GP-GrundlagenProgrammierung-v10.docx 6

Kursunterlagen R u
U

GP Gru ndlag en Prog ram mierung REGIONALES AUSBILDUNGSZENTRUM AU

A4 Erstellen Sie folgenden Baum:

e INs
o Windows
= Installationsprotokoll.docx
= Lizenzen.docx
o Linux
= syslog
= _bashrc

o Netzwerk
= Netzwerkplan_physisch.vsdx
= Netzwerkplan_logisch.vsdx
Notieren Sie sich, welche Befehle Sie in welcher Reihenfolge benutzt haben.

A5 Nun verschieben, I6schen oder kopieren Sie die Files so, dass Sie folgenden Baum
erhalten.
e INs
o RAU-Informatik
» Lizenzen.docx

= syslog
= _bashrc
o Linux

= Shellscript.sh
= Netzwerkplan_logisch_Kopie.vsdx
o Netzwerk
»= Netzwerkplan_physisch.vsdx
= Netzwerkplan_logisch.vsdx
Notieren Sie sich, welche Befehle Sie in welcher Reihenfolge benutzt haben.

A6 Benutzen Sie nun einen einzigen Befehl, um alle Files anzuzeigen.

2.1.1 Pipeing

Ein wichtiges Konzept bei der Arbeit mit PowerShell, aber auch in Shell Scripts unter Linux
Systemen ist das Pipeing. Dabei geht es darum, die Ausgabe des einen Befehls, wie durch eine
Rohre (Pipe) in den néchsten zu leiten.

Get-Service Spooler Restart-Service

So kdénnen auch mehrere zurickgegebene Objekte behandelt werden. Z.B. fur Get-Childitem
Get-ChildItem | Get-ItemProperty -Name LastWriteTime

Eine wichtige Funktion ist das Filtern bzw. gezielte Ausgeben von Objekten und deren
Eigenschaften. Mit Where-Object wird gefiltert, welche Objekte angezeigt werden und mit
Select-Object wird definiert, welche Eigenschaften angezeigt werden sollen.

z.B. Get-childitem | where-object {$_.Name "% exe"} Select-Object Name

A7 Benutzen Sie den Befehl Get-Childltem um den aktuellen Ordnerinhalt anzuzeigen.
Vergleichen Sie anschliessend das Resultat mit und ohne Filter.

HandOut-GP-GrundlagenProgrammierung-v10.docx 7

Kursunterlagen R u
U

GP Grundl agen Prog rammierun g REGIONALES AUSBILDUNGSZENTRUM AU

2.2 Scriptbereich

Nun da Sie die grundlegende Anwendung von PowerShell getibt haben, wollen wir versuchen
diese Kenntnisse bei der Erstellung eines Scripts zu repetieren und zu vertiefen. Einfache
Scripts kénnen sehr schnell erstellt werden, in dem die genutzten Befehle nacheinander in die
Script-Datei eingetragen werden. Dies soll nun mit je einem Script fur die Aufgaben A4 und A5
ausprobiert werden.

A8 Erstellen Sie nun ein Script zu A4, welches den gesamten Verzeichnisbaum erstellt.

Der Befehl Get-History kann dabei sehr hilfreich sein.
A9 Nun erstellen Sie ein Script zu A5, welches die Mutationen im Baum vornimmt.

Al10 Bevor Sie diese Scripts ausfuihren kénnen, missen Sie die Ausfihrung von Scripts auf
dem System freischalten. Welcher Befehl wird dazu genutzt und welche
verschiedenen Optionen kdnnen gewahlt werden? Schreiben Sie dazu eine kurze
Anleitung inkl. der Bedeutung dieser verschiedenen Varianten.

All Fuhren Sie nun ihre Scripts nhacheinander mit der Taste F5 oder den dazu

verwendeten Schaltflachen aus. b

HandOut-GP-GrundlagenProgrammierung-v10.docx 8

Kursunterlagen R u
U

GP Gru ndlag en Prog ram mierung REGIONALES AUSBILDUNGSZENTRUM AU

3. Operationen und Variablen

Operatoren sind wohlbekannt aus der Mathematik. Nattrlich wird bei der Mathematik
hauptséachlich tGber die arithmetischen Operatoren gesprochen. In der Umgebung von
Programmieren und Scripten gibt es jedoch noch weitere. Gestartet wird jedoch mit Bekanntem.

3.1 Arithmetische Operatoren

Al12 Fur den Einstieg in das Thema Operatoren, I6sen Sie die untenstehenden
Rechnungen mithilfe der PowerShell Konsole.
67 +5
46 -9
7*12
184 /4

167 % 3 =
Was bedeutet dieses Prozentzeichen?

Al13 Interessant ist, dass nicht nur Zahlen ,addiert” werden konnen, sondern auch
Buchstaben oder Warter und hier ist nicht die Rede von Algebra. Versuchen Sie es
aus und notieren, welche Ausgabe auf dem Bildschirm erscheint:

“abc” * 3 :
Jhallo , + ,welt*

3.2 Zuweisungsoperator und Variablen

Wie Sie oben vielleicht bereits bemerkt haben, ist es nicht nétig bzw. sogar falsch, wenn Sie das
Gleichheitszeichen verwenden fur Rechnungen. lhr System erwartet mehr. Das
Gleichheitszeichen besitzt eine besondere Funktion. Es ist dazu da Werte zuweisen zu kénnen.

Diese errechneten oder erhaltenen Werte, werden einer Variable zugewiesen. Diese Variablen
koénnen verschiedenste Werte speichern, um sie spater wieder abrufen zu kénnen. In
PowerShell macht es dabei keinen Unterschied, ob es kleine Zahlen, grosse Zahlen oder gar
ganze Satze sind. Es wird selbst erkannt, wie es mit den gespeicherten Informationen
umzugehen hat oder gibt eine Fehlermeldung, wenn die gespeicherten Werte nicht zur Situation
passen. Passen Sie aber auf, wenn Sie mit anderen Programmiersprachen entwickeln. Es gibt
Sprachen, in denen Sie genau definieren missen, welche Art von Daten eine Variable enthalt.

Es folgt ein kleines Beispiel anhand dessen die Variablen und deren Nutzung erklart werden
soll:

$zah1l = 3 # Der wert 3 wird der variabel $zahll zugewiesen
$zah12 1+4 # Das Resultat von 1 + 4 wird der variabel $zahl12 zugewiesen

$resultat = $zahll * $zah12 # Die variablen konnen nun gelesen werden und das Resultat
wird in eine weitere gespeichert.

write-output $resultat # Das Resultat wird auf die Konsole geschrieben

HandOut-GP-GrundlagenProgrammierung-v10.docx 9

Kursunterlagen R u
U

GP Gru ndlag en Prog ram mierung REGIONALES AUSBILDUNGSZENTRUM AU

Wenn wir uns das Beispiel oben ansehen, sehen wir die Zuweisung von Werten zu ihren
Variablen mithilfe des Gleichheitszeichens und wir sehen ebenfalls wie diese Werte wieder
gelesen werden konnen. Dabei verhalten sich Variablen wie die darin gespeicherten Werte.

Auch wichtig sind Kommentare. Sie dienen zur Dokumentation innerhalb des Codes und
unterstiitzen so Andere dabei, Ihren Code zu verstehen. Nicht zu vergessen ist auch, dass Sie
Ihren Code nach langerer Zeit wieder verstehen mochten. Dabei helfen Kommentare ungemein.
Kommentare werden mit # eingeleitet und gelten bis zum Ende der Zeile.

3.3 Inkrement und Dekrement

Fur viele Operationen in Verbindung mit dem Zuweisungsoperator (,=*) gibt es Abkirzungen und
Vereinfachung.
Al4 Was wird nach dem folgenden Codeausschnitt auf die Konsole geschrieben?
Informieren Sie sich Uber die gesehenen Operatoren und versuchen Sie die Lésung zu

finden.
$zahl11 25
$zahl2 50

$zahl2 25

$zah12 $zah12 $zah1l
$zah12

$zah12 $zah11

write-output $zahl2 $zahll

Al5 Was wird hier auf der Konsole ausgegeben?
$textl = "Das ist "
$text2 "richtig!"

fausgabe = $textl
$ausgabe $text2

write-Output $ausgabe

3.4 Vergleiche und deren Operatoren

Nun kommt ein weiterer Schritt zu einem echten Programm hinzu. In beinahe jedem Programm
wird der weitere Verlauf durch die Werte von Variablen bestimmt. Sie sollen jetzt lernen, wie
diese Werte Uberprift werden und wie der weitere Verlauf damit kontrolliert werden kann.

Ein Vergleich gibt immer ein Resultat zurtick, ob der Vergleich stimmt (True) oder nicht (False).
Zudem konnen Vergleiche auch miteinander verknupft werden, um gleich mehrere Vergleiche zu
Uberprifen. Es gibt sehr viele Vergleichsoperatoren, die folgend kurz ausgefihrt werden:

-eq Equals (statt dem in der Mathematik Gblichen ,=*)
-ne Not Equa

-It Less Than

-le Less or Equal

-gt Greater Than

-ge Greater or Equal

HandOut-GP-GrundlagenProgrammierung-v10.docx 10

Kursunterlagen R u
U

GP Gru ndlag en Prog ram mierung REGIONALES AUSBILDUNGSZENTRUM AU

Fur Worter oder ganze Satze, werden gerne auch andere Operatoren benutzt, wie sie unten
kurz beschrieben werden. Der Grund dafir ist, dass bei —eq die Zeichenkette genau
tbereinstimmen muss und keine Wildcards unterstttzt werden.

-like Nutzt Wildcards wie * und ?
-notlike

-match Nutzt Regular Expressions
-notmatch

Da Regular Expressions in sich schon diese drei Tage fullen wirden, liegt die Aufmerksamkeit
auf den sogenannten Wildcards. Wobei ,** fur eine beliebige Anzahl beliebiger Zeichen steht
und ,?“ steht fir ein beliebiges Zeichen.

Al6 Geben Sie fir die folgenden Vergleiche der Zahlen an, ob diese stimmen oder nicht.
Schreiben sie dazu das Resultat (True oder False)
7-ne7
5-eq5
4-t8
9-le9
6 —gt 10

Al7 Nun bestimmen Sie das Resultat bei Vergleichen von verschiedenen Zeichenketten.
~LRAU“ —like ,?AU"
LAU“ —like ,?AU“
,Dampfwalze“ —notlike ,Dam*|ze"

Diese Vergleiche kdnnen mit logischen Operatoren miteinander verknupft werden, um
komplexere Uberpriifungen durchftihren zu kénnen.

-and Beide Vergleiche missen True ergeben
-or Einer oder beide Vergleiche mussen True ergeben
-Xor Genau ein Vergleich ergibt True

-not (1) Andert Resultat eines Vergleichs

Al8 Was ergeben nun also folgende verkniipften Vergleiche?
$zahl =13
$wort = ,Informatiker”

$zahl —eq 4 —xor $zahl —gt 7

$zahl —le 13 —and $zahl —gt 3

$wort —like ,Info” —or $wort —notlike ,*matiker”
I($wort —like ,Info*) —and $zahl —ne 3

HandOut-GP-GrundlagenProgrammierung-v10.docx 11

Kursunterlagen R u
U

GP Grundlagen Programmierung REGIONALES AUSBILDUNGSZENTRUM AU

3.5 If-Statement

Wie kénnen diese Vergleiche nun zur Kontrolle des Programm- bzw. Scriptablaufs verwendet
werden? Dazu wird ein If-Statement verwendet. Beachten Sie dazu das kurze Beispiel und die
enthaltenen Kommentare.

$zahl 7 # Eine einfache zahl wird zum vergleich definiert
if ($zahl 5){ # zZuerst wird gepriuft, ob die zahl gleich 5 ist.
write-output "Die zahl ist 5." # Ist dies der Fall (True) wird es auf die Konsole geschrieben
}elseif($zahl 5){ # elseif ermoglicht einen zweiten Vergleich
Write-Output "Die zahl ist grésser als 5."
}else{ '# der code fir else wird aufgerufen, wenn der Vvergleich False war

write-output "Die zahl ist kleiner als 5.'

Bei diesem Beispiel gilt es zu beachten, dass elsif oder else nicht zwingend nétig sind. Die
Einrtickung innerhalb der geschweiften Klammern dient dazu, die Lesbarkeit des Programms zu
verbessern.

A19 Ubernehmen Sie das Beispiel in die PowerShell ISE und fuihren Sie es mit
verschiedenen Werten fir $zahl aus.

A20 Schreiben Sie ein Script, welches lberprift, ob der Computer den richtigen Namen
tragt. Der Name ihres Computers sollte dem folgenden Muster entsprechen: ELBINXX.
Dieser Name ist auf dem Gerét selbst festgehalten. Nun ist der Name nicht zwingend
korrekt. Schreiben Sie eine kurze Ausgabe auf die Kommandozeile. Den
Computernamen erhalten Sie mit dem Befehl hostname.

HandOut-GP-GrundlagenProgrammierung-v10.docx 12

Kursunterlagen R u
U

GP Gru ndlag en Prog ram mierung REGIONALES AUSBILDUNGSZENTRUM AU

4. Benutzereingaben

Der néchste Schritt ist es die erstellten Scripts interaktiver zu gestalten und dem Benutzer der
Scripts eine Einflussmadglichkeit zu geben. Informationen kdnnen auf verschiedene Arten vom
Benutzer erhalten werden.

4.1 Parameter beim Scriptaufruf

Wie bei verschiedenen Befehlen bereits zu erkennen, kénnen Informationen wie das zu
kopierende File als Parameter tibergeben werden. Diese Mdglichkeit kann auch innerhalb eines
Scripts genutzt werden, indem wir alle Eingaben zuerst als Variablen speichern. Hier muss
jedoch bekannt sein, welche Art von Informationen gespeichert werden soll.

Param(
int]$zahl 3 # [TyplName = Standardwert

if($zahl 3D{
write-output "Richtig"
}else{

write-output "Falsch"

In diesen Param Bereich kdnnen nun alle nétigen oder maglichen Parameter eingetragen
werden. Wird kein Wert geliefert, wird ein optionaler Standardwert gewahlt.

Fur diese Parameter kbnnen verschiedene Typen gewahlt werden. Die grundlegendsten sind
sicher Zeichenketten, Zahlen und Switches.

[string] Eine Kette von Zeichen, also Worter, Satze usw.
[int] Integer oder Ganzzahl.
[float] Kommazahlen

[switch] = Erhalten keinen Wert. Wird auf True gesetzt, wenn der Parameter genannt wird.

A21 Ubernehmen Sie nun ihr Script aus A19 und andern es so ab, dass die zu
vergleichende Zahl beim Aufruf Gbermittelt wird.

A22 | Erganzen Sie das Script und geben Sie die Méglichkeit einen Namen zu Ubergeben.
Die Ausgabe sollte dann etwa wie folgt aussehen:
Christian fragt, ob 1 gleich 5 ist.

A23 | Erstellen Sie einen Switch-Parameter lang.
Nur wenn dieser angegeben wird, soll tberprift werden, ob die Zahl kleiner oder
grosser ist. Wird lang nicht angegeben, soll lediglich tGberprift werden, ob die Zahlen
Ubereinstimmen.

HandOut-GP-GrundlagenProgrammierung-v10.docx 13

Kursunterlagen R u
U

GP Grundlagen Programmierung REGIONALES AUSBILDUNGSZENTRUM AU

4.2 Eingabe wahrend Ausfiihrung

Zusatzlich zu den Parametern kdnnen vom Benutzer gezielt Informationen erfragt werden, wenn
das Script bereits ausgefuhrt wird. Dies kénnte in etwa wie folgt aussehen.

$name Read-Host -Prompt "wie Tlautet ihr Name?"
wWrite-output "Hallo $name”

A24 Andern Sie das Script aus A21 so ab, dass die Zahl und der Name nacheinander
erfragt werden und nicht mehr als Parameter Ubergeben werden.

A25 Schreiben Sie ein Script, bei dem zwei Benutzer mit ihrem Namen eine Zahl eingeben
kénnen. Danach wird Uberpruft, wer sich naher an einer Zahl zwischen 1 und 100
befindet.

Fur Zufallszahlen kann der Befehl Get-Random benutzt werden. Prifen Sie die
korrekte Anwendung zuerst mit Get-Help.

HandOut-GP-GrundlagenProgrammierung-v10.docx 14

Kursunterlagen R u
U

GP Grundl agen Prog rammierun g REGIONALES AUSBILDUNGSZENTRUM AU

5. Schleifen

Oft mussen in Programmen dieselben Dinge wiederholt werden. Meist flr verschiedene
Elemente. Dies wird mit sogenannten Schleifen umgesetzt.

51 For

For Schleifen werden genutzt, um etwas wahrend einer bestimmten Anzahl von Wiederholungen
auszufuhren. Z.B. um von 0 bis 10 zu z&hlen. Das For Statement besteht dabei aus drei Teilen.
Einer Initialisierung (meistens die Z&hlvariable), einem Vergleich und einer Operation, die nach
jedem Durchlauf ausgefihrt wird.

for($i=0;%1 10; $i){
write-output $1

5.2 While

While Schlaufen werden dazu genutzt etwas auszufiihren bis ein bestimmter Zustand nicht mehr
erflllt ist. So kann von einer Datei so lange gelesen werden, solange es etwas zu lesen gibt.

$input = "weiter"]]]))]
while($input "exit"){ # wiederholt sich, bis exit eingegeben wurde
$input Read-Host "weiter oder exit?:"

5.2.1 Do While
Mit Do While kann sichergestellt werden, dass eine Schleife mindestens einmal durchlaufen
wird.

do{ # wiederholt sich, bis exit eingegeben wurde
$input Read-Host "weiter oder exit?:"
Iwhile(S$input "exit")

5.2.2 Do Until
Do Until ist beinahe dasselbe. Es wird jedoch ausgefihrt bis die Bedingung erfllt ist. So muss in
unserem Beispiel das —ne in ein —eq geandert werden.

do{ # wiederholt sich, bis exit eingegeben wurde
$input = Read-Host "weiter oder exit?:"
Iuntil(S$input "exit")

5.3 ForEach

ForEach wird benétigt um fur jedes Element z.B. in einem Array einen Durchlauf zu machen.
Arrays sind spezielle Variablen, welche mehrere Werte beinhalten. So kann z.B. leicht fir jedes
File in einem Ordner eine Aktion ausgefiihrt werden.

$files Get-ChildItem

foreach($file in $files){
write-output "File gefunden $file"

HandOut-GP-GrundlagenProgrammierung-v10.docx 15

Kursunterlagen R u
U

GP Grundl agen Prog rammierun g REGIONALES AUSBILDUNGSZENTRUM AU

5.4 Aufgaben

A26 | Schreiben Sie ein Script, das den Parameter —prefix entgegennimmt und diesen Text
vor jeden Filenamen im aktuellen Ordner hangt.
Beispiel: Zusammenfassung_PowerShell.docx wird mit dem Prafix RAU-
zu RAU-Zusammenfassung_PowerShell.docx

A27 In dieser Aufgabe soll man seinen eigenen praktischen Notenrechner
zusammenbauen. Damit man selbst nicht mehr so mihsam rechnen muss, wird die
Eingabe auf zwei Werte beschrankt: Die maximale Punktzahl, die in der Prifung zu
erreichen ist und die erreichte Punktzahl in der Prufung. Im Hintergrund wird eine
Rechnung aufgebaut, die die beiden Variablen zu einem Wert zusammenzahlt und mit
einer If-Abfrage das Resultat der Note ausgibt.

erreichte Punktezahl

5+1

Berechnung Note: maximale Punktezahl

Beispiel: 45 erreichte Punkte und 60 maximale Punkte ergibt die Note 4.75.

Man soll ebenfalls entscheiden kdnnen, ob die Rechnung auf die gerundete Note
ausgefuhrt wird und auch ob man eine weitere Note berechnen méchte.

HandOut-GP-GrundlagenProgrammierung-v10.docx 16

Kursunterlagen R u
U

GP Gru ndlag en Prog ram mierung REGIONALES AUSBILDUNGSZENTRUM AU

6. Funktionen

Funktionen werden genutzt, um Programmteile, die an verschiedenen Orten im Code genutzt
werden, zu definieren. So kann die Funktion einmal geschrieben werden und Uberall im Code
verwendet werden. Programmcode der in einer Schleife genutzt wird, wird oft ausgefihrt aber
nur einmal geschrieben. Funktionen eignen sich also nur bedingt um diese zu vereinfachen. Die
Lesbarkeit und das Verstandnis des Programms kann jedoch klar verbessert werden. Es geht
auch darum, die Redundanz im Code zu minimieren, damit ein Fehler auch nur an einer Stelle
behoben werden muss oder zukinftige Erweiterungen schnell umgesetzt werden kénnen.

Funktionen ibernehmen einen Ubergabewert (Parameter) und geben falls notig, einen Wert
zuriick. Ein einfaches Beispiel ist eine Funktion, welche eine Summe bildet.

function sum($zah1l, $zah12){
return $zahll $zahl2

$ausgabe = sum 1 2

Write-Output $ausgabe

Eine Funktion muss immer oberhalb des Aufrufs definiert werden, damit die Funktion auch
bekannt ist. In diesem Beispiel werden die zwei Zahlen Ubergeben und die Summe mit return
zuriickgegeben. Ubergabewerte und Riickgabewert sind optional.

A28 Erstellen Sie ein Script, welches zur Berechnung von Dreiecken dient. Erstellen Sie in
einer Schleife ein Menu, welches zur Auswahl stellt, ob die Flache (A), Hohe (hc) oder
die Lange der Hypotenuse (c) berechnet werden soll. Gehen Sie davon aus, dass es
sich jeweils um ein rechtwinkliges Dreieck handelt und der Benutzer die Langen der
Seiten a und b Ubermittelt.

Lagern Sie jede Berechnung als Funktion aus.

Der Zeitpunkt und die Art, wie die Kantenlangen erfasst werden, ist Ihnen tberlassen.
In welchem Teil des Programms die Ausgabe ausgefihrt wird, ist auch lhnen
Uberlassen.

A29 Erstellen Sie ein ahnliches Programm. Dieses Mal haben Sie jedoch die Lange (a) und
die Breite (b) eines Rechtecks. Ihr Programm soll Funktionen zur Berechnung der
Flache (A), der Diagonale (c) und des Umfangs (U) liefern.

HandOut-GP-GrundlagenProgrammierung-v10.docx 17

Kursunterlagen R u
U

GP Gru ndlag en Prog ram mierung REGIONALES AUSBILDUNGSZENTRUM AU

A30

A3l

A32

Niveau 1: Schreiben Sie ein Skript, welches den Benutzer eine Zahl erraten lasst.
Nach jedem Versuch soll mitgeteilt werden, ob die gesuchte Zufallszahl h6her oder
tiefer ist. Sobald die geratene Zahl Ubereinstimmt, wird mit einer Gratulation beendet.
Versuche sie die Aufgabe mithilfe einer Funktion umzusetzen. Eine Zahl zwischen 1
und 100 erraten.

Niveau 2: Schreiben Sie ein Skript, welches den Benutzer eine Zahl erraten lasst.
Nach jedem Versuch soll mitgeteilt werden, ob die gesuchte Zufallszahl héher oder
tiefer ist. Sobald die geratene Zahl Ubereinstimmt, wird mit einer Gratulation beendet.
Versuche sie die Aufgabe mithilfe einer Funktion umzusetzen. Im Skript soll zwischen
drei verschiedenen Schwierigkeitslevel ausgewahlt werden kénnen. Ein Level von 1-
10, 1-100 und von 1-1000.

Niveau 3: Schreiben Sie ein Skript, welches den Benutzer eine Zahl erraten lasst.
Nach jedem Versuch soll mitgeteilt werden, ob die gesuchte Zufallszahl h6her oder
tiefer ist. Sobald die geratene Zahl tGibereinstimmt, wird mit einer Gratulation beendet.
Versuche sie die Aufgabe mithilfe einer Funktion umzusetzen. Im Skript soll zwischen
drei verschiedenen Schwierigkeitslevel ausgewahlt werden kénnen. Ein Level von 1-
10, 1-100 und von 1-1000. Dazu sollte in der Gratulation ersichtlich sein wie viele
Versuche der Benutzer gebraucht hat.

HandOut-GP-GrundlagenProgrammierung-v10.docx 18

Kursunterlagen R u
U

GP Grundl agen Prog rammierun g REGIONALES AUSBILDUNGSZENTRUM AU

7. Theorie Abschlussprojekt

7.1 Benutzer erstellen

Name Erklarung

net user Wenn dieser Befehl alleine steht, zeigt er an, welche Benutzer aktuell auf dem Computer vorhanden sind.
Benutzername Dies ist der Name des Benutzers (bis zu 20 Zeichen lang) den man bearbeiten, I6schen oder hinzufiigen
Passwort \LIJVIri das Passwort festzulegen.

/add Um den Benutzer hinzuzufiigen.

/domain Um den Benutzer zur Domain hinzuzufugen.

/delete Um den Benutzer zu léschen.

/help Um Details Uber diesen Befehl zu erhalten.

7.2 Netzlaufwerk hinzufligen

Mit dem Befehl "New-PSDrive" kénnen Netzlaufwerke hinzugefigt werden.
New-PSDrive [-name] string [-root] string [-Persist] [-PSProvider] string

Name Erklarung

-name Definiert den Namen des Netzlaufwerks.

-root Der Ort, wo das Netzlaufwerk herkommt.

-persist Definiert, dass das Netzlaufwerk persistent ist.

-PSProvider Der Name des PSProviders, kann FileSystem, Registry oder Certificate sein.

7.3 Out-GridView

Name Erklarung

Out-Gridview Erstellt ein Output-Fenster einer tabellarischen Ansicht der Daten, die damit abgerufen werden. Lasst sich
in Piping verwenden.

-title «<Name» Gibt dem Fenster einen Titel.

-PassThru Offnet die Tabelle mit einer OK und Schliessen Schaltflache. Die Auswahl wird durch OK an die Konsole
zurlickgegeben.

-wait

-OutputMode

HandOut-GP-GrundlagenProgrammierung-v10.docx 19

Kursunterlagen R U
U

GP Gru ndlag en Prog ram mierung REGIONALES AUSBILDUNGSZENTRUM AU

8. Schlussprojekt

Nun haben Sie die wichtigsten Kenntnisse erlangt, um auch umfangreichere Scripts und
Programme zu erstellen. Auf dem weiteren Weg geht es darum immer neue Cmdlets
kennenzulernen, welche fir die verschiedensten Aufgaben bendtigt werden.

Als erste Aufgabe mit einem realen Nutzen erstellen Sie ein Script zur Konfiguration eines
Betriebssystems. Dafiir nehmen Sie die Vorgaben aus dem Modul 304.

Ziel ist es, dass das Script samtliche Konfigurationen ohne Unterbruch selbstandig ausfiihrt.
8.1 Durchzufihrende Konfigurationen Niveau 1

A33 Erstellen Sie mit dem Script folgende Benutzerkonten:

Informatik Administrator Raurau_10
Elektronik Standard Elerau_10
Mechanik Standard Mecrau_10

A34 Verbinden Sie folgende Netzlaufwerke:
J: \\192.168.75.10\Austausch\Iinformatik\Abgaben
T: \\192.168.75.10\Austausch\Informatik\Vorgaben
P: \\192.168.75.10\UserHome$\h_muster

A35 | Figen Sie Outlook dem Windows Autostart hinzu.

8.2 Durchzufihrende Konfigurationen Niveau 2
A36 Ein Menl mit Grid-View erstellen. In diesem soll zwischen «Datei kopieren», «Datei
verschieben» und «Datei [6schen» ausgewéahlt werden kénnen. Der neue Speicherort
soll dann automatisch im Explorer getffnet werden.

8.3 Durchzufihrende Konfigurationen Niveau 3

A37 Erstellen Sie mit dem Script folgende Benutzerkonten:

Informatik Administrator Raurau_10
Elektronik Standard Elerau_10
Mechanik Standard Mecrau_10

A38 | Aktivieren Sie alle Desktopsymbole (Arbeitsplatz, Papierkorb, Benutzer,
Systemsteuerung und Netzwerk).

A39 Definieren Sie die Anzeigeoptionen des Datei Explorer wie folgt.
Dateierweiterung auch bei bekannten Dateitypen anzeigen.
Geschitzte Systemdateien anzeigen.

Versteckte Dateien anzeigen.

Vollstandiger Pfad in der Adressliste anzeigen.
Detailansicht als Standard

HandOut-GP-GrundlagenProgrammierung-v10.docx 20

Kursunterlagen R u
U

GP Grundlagen Programmierung REGIONALES AUSBILDUNGSZENTRUM AU

A40

A4l

A42

A43

Ad4

Verbinden Sie folgende Netzlaufwerke:

J: \\192.168.75.10\Austausch\Iinformatik\Abgaben
T: \\192.168.75.10\Austausch\Informatik\VVorgaben
P: \\192.168.75.10\UserHome$\h_muster

Fugen Sie die in A40 verbundenen Netzlaufwerke dem Schnellzugriff hinzu. Der
Desktop- und Dokumentordner sollen ebenfalls hinzugefligt werden.

Schalten Sie die Audioausgabe auf Stumm.
Fugen Sie Outlook dem Windows Autostart hinzu.

Stellen Sie sicher, dass www.r-au.ch als Startseite definiert ist.

HandOut-GP-GrundlagenProgrammierung-v10.docx 21

Kursunterlagen R u
U

GP Grundl agen Prog rammierun g REGIONALES AUSBILDUNGSZENTRUM AU

8.4 Zusatzaufgabe: Konfigurationen Uberpriifen

Wahrend den Installationen im Modul 304 mussten Sie verschiedene Einstellungen vornehmen
und verschiedene Programme zusatzlich installieren. Erstellen Sie nun ein Script, welches die
getatigten Installationen und Konfigurationen tberprift. Gehen Sie dazu in zwei Schritten vor.
Zuerst erarbeiten Sie, wie die notigen Informationen in PowerShell gefunden werden kénnen. In
einem zweiten Schritt Gberprufen Sie die gefundenen Informationen auf ihre Richtigkeit und
stellen das Resultat dem Benutzer zur Verfligung.

A45 Uberprifen Sie, ob sich die Systempartition C: auf der SSD Disk befindet.

A46 Uberprifen Sie, ob das komplette Office Paket installiert wurde oder, ob einzelne
Programme fehlen. In einer Ausgabe soll ebenfalls ersichtlich sein, welche Programme
noch zu installieren sind.

A47 Kontrollieren Sie analog zu A46 folgende Programme:
Visio
Acrobat Reader
GIMP
Inkscape
Notepad++
Visual Studio
Eclipse
Android Studio

HandOut-GP-GrundlagenProgrammierung-v10.docx 22

